


## Limnology, Chapter 7: Surface and bottom boundary layers in lakes



Lake Geneva, Vevey, 6<sup>th</sup> August 2018

1

1

### Oral exam:

Monday 23 June 2025 from 09h to 16h, GC A1 416

|    | Preparation   | Examen        |                                |
|----|---------------|---------------|--------------------------------|
| 1  | 09.00 - 09.15 | 09.30 - 09.45 | Tiago Gonçalves Jessica        |
| 2  | 09.30 - 09.45 | 09.45 - 10.00 | Stöckli Marlen Tabea           |
| 3  | 10.30 -10.45  | 10.45 -11.00  | Spoletini Nicola               |
| 4  | 10.45 -11.00  | 11.00 -11.15  | Schmidt Julia                  |
| 5  | 11.00 -11.15  | 11.15 -11.30  | Noske Theresa                  |
| 6  | 11.15 -11.30  | 11.30 -11.45  | Istepanyan Anna                |
| 7  | 11.45 - 12.00 | 12.00-12.15   | Henrioux Sven                  |
| 8  | 12.00-12.15   | 12.15-12.30   | Gremion Benjamin Samuel        |
| 9  | 13.30 -14.00  | 14.00 - 14:15 | Bojaly Clua Alberto Nicolas    |
| 10 | 14.00 - 14:15 | 14.15 - 14:30 | Faval Emma Charlotte Joséphine |
| 11 | 14.15 - 14:30 | 14.30 - 14:45 | Clément Julien                 |
| 12 | 14.30 - 14:45 | 14.45 - 15:00 | Breton Jules Louis Patrick     |
| 13 | 15.15 -15.30  | 15.30 -15.45  | Barthez Mathias Jean           |
| 14 | 15.30 -15.45  | 15.45 -16.00  | Aymon Joël                     |

2

You are allowed to bring with you a A4 page (one side)

2

## Limnology (TU at 09.15)

### Updates for the next classes

| class no | Date       | Teacher        |                                              |
|----------|------------|----------------|----------------------------------------------|
| 9        | 15.04.2025 | Odermatt       | Remote sensing / Water quality               |
|          | 22.04.2025 | Holiday        | Easter                                       |
| 10       | 29.04.2025 | Tofield-Pasche | Field work on LéXPLORÉ platform/ Convection  |
| 11       | 6.05.2025  | Tofield-Pasche | Convection / Geochemistry                    |
| 12       | 13.05.2025 | Tofield-Pasche | Geochemistry/Field work on LéXPLORÉ platform |
| 13       | 20.05.2025 | Tofield-Pasche | Summary and Energy                           |
| 14       | 27.05.2025 | Free           |                                              |

3

3

## Remote sensing - preparation

- download and install the open source satellite image processing toolbox from ESA, including the 'Sentinel Toolboxes' (top row): <https://step.esa.int/main/download/snap-download/>
- After installation, please start SNAP, choose the option 'Tools/plugins' from the menu bar at the top, and select and install 'IdePix MERIS' from the list of 'Available plugins'.
- download also at least one of the three satellite images (500 MB each, dropbox preview will show an error, but downloading works)
- All information will be on the moodle (and links to the images)
- In case of problem, daniel.odermatt@eawag.ch

4

## After the holidays

### LéXPLORÉ visit on 29 April or 13 May:

- Confirmed on Monday 28 April or 13 May. Please also check your email in the morning, in case of last minute cancellation.
- If no visit → course in usual room
- Meeting point in Pully-Plage near the Club Nautique at 9h30 to 11h
- 1 group of 7 persons
- The visit will last 1h30 (including the boat transfers)



Please confirm your participation

<https://doodle.com/meeting/participate/id/dGWRk4rd>

5

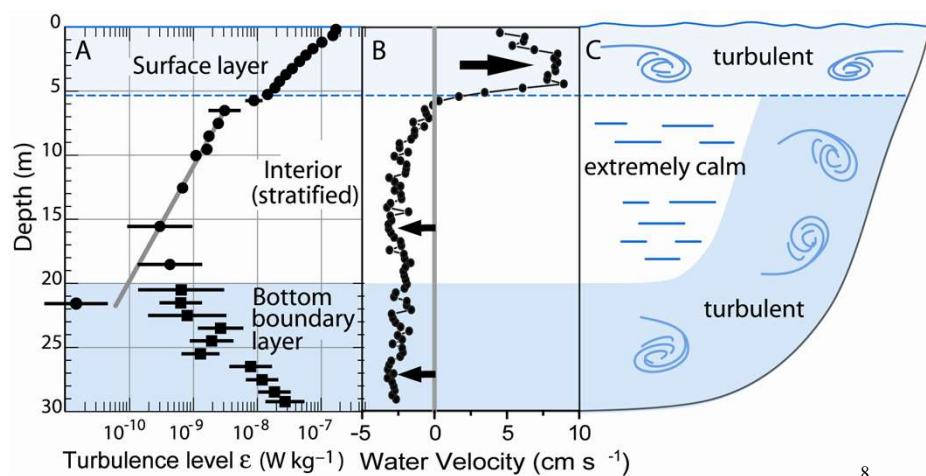
## Meeting point



6

## Learning objectives

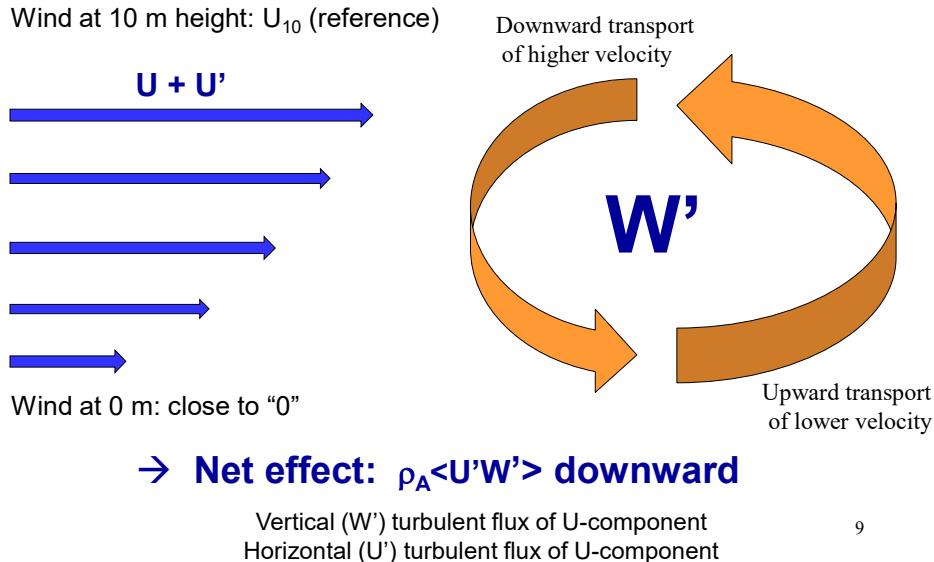
### Chapter 7: Surface and bottom boundary layers


Today you will learn about :

1. Wind forcing (SBL)
2. Friction (BBL)
3. LOG-layer / turbulence
4. Viscous boundary layer
5. Diffusive boundary layer

7

7


### Surface and bottom boundary layers: two locations of turbulence and exchange



8

8

## 1. The physics of the momentum flux



9

## 1. The force of wind onto water surface

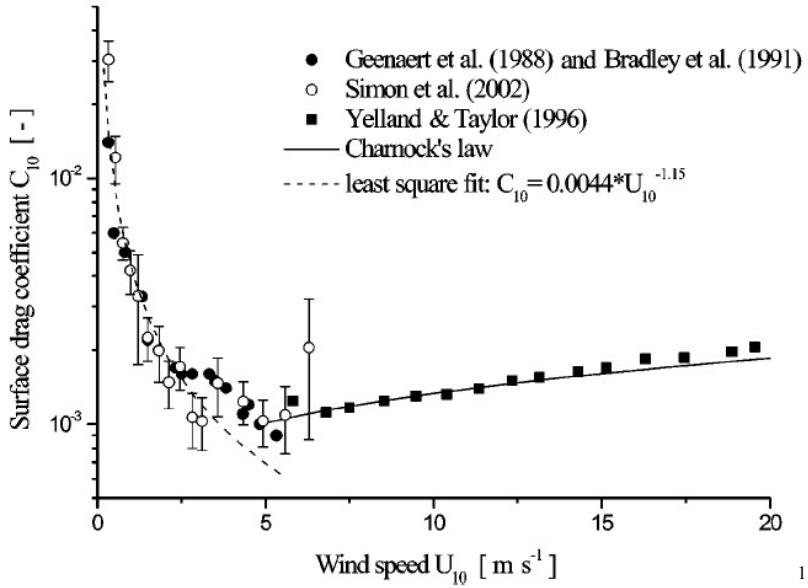
Assumptions:

- $U'$  (horizontal) proportional to  $U_{10}$
- $W'$  (vertical) proportional to  $U_{10}$

- Momentum flux = force/area [ $\text{Nm}^{-2}$ ] =  $\rho_A <U'W'>$
- Surface stress (force/area) [ $\text{Nm}^{-2}$ ] =  $C_{10} \rho_A (U_{10})^2$
- Factor  $C_{10}$  to fix the "equation" (non-dim)

**Constant stress across air-water interface water**

$$\tau = \rho_{air} \overline{U'W'} = \rho_w \overline{u'w'}$$


$$\tau = \rho_{air} C_{10} U_{10}^2$$

General for turbulence  
! Friction force  $\sim U^2$  !

10

10

## 1. Drag coefficient as $f(U_{10})$



11

11

## 1. The force of wind onto water surface

$$\tau = \rho_{air} \overline{U' W'} = \rho_w \overline{u' w'}$$

$$\tau = \rho_{air} C_{10} U_{10}^2$$

*Definition*  $u_*$  and  $w_*$

$$\tau = \rho_w u_*^2 = \rho_{air} w_*^2$$

12

12

## 2. Friction velocity = shear velocity (drag velocity)

Turbulent velocity fluctuations in the LOG-layer

**Def:**  $w_*^2 = \langle U'W' \rangle = \tau / \rho_A$

**Def:**  $u_*^2 = \langle u'w' \rangle = \tau / \rho_W$

Sometimes in text / papers sloppily:  
 $(w_*)^2$  or  $w_*$  addressed as shear stress

13

13

### In class exercice:

#### 1) Friction velocity

Wind with a velocity of  $U_{10} = 5 \text{ m s}^{-1}$  blows on a lake.  $C_{10} = 1 \cdot 10^{-3}$   $\rho_{\text{air}} = 1.25 \text{ kg m}^{-3}$

- 1) What is the shear stress on the water?
- 2) Calculate the shear velocities in the air and in the water?
- 3) What is the ratio between these two velocities?

14

14

## Three boundary layers

|          |                  |
|----------|------------------|
| Air      |                  |
| DBL      | 1mm              |
| VBL      | 1 cm             |
| LOG      | a few m          |
| Interior | 10s to 100s of m |
| LOG      | a few m          |
| VBL      | 1cm              |
| DBL      | 1mm              |
| Sediment |                  |

16

### 3. The Law of the Wall: LOG layer – air side

Prandtl assumption:

$$K_m = k w_* h,$$

with  $k = 0.41$  = von Kármán constant

**eddy sizes and diffusivity increase with distance  $h$  to the wall**

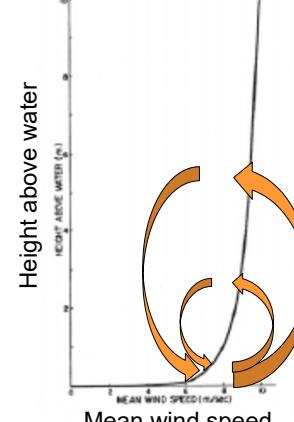


17

17

### 3. The Law of the Wall: LOG layer – air side

$$\begin{aligned} \tau &= \rho_{air} \overline{U'W'} \\ &= \rho_{air} K_m \partial U / \partial z \end{aligned}$$


Prandtl:  $K_m = k w_* h$ , with  $k = 0.41$

$$(7.2.5) \quad \frac{\partial U}{\partial h} = \frac{\sqrt{\tau / \rho_{air}}}{k h}$$

$$(7.2.6) \quad U(z) = U_0 + \frac{w_*}{k} \ln\left(\frac{h}{h_0}\right)$$

$U_0$  = surface roughness = velocity at the air-water interface

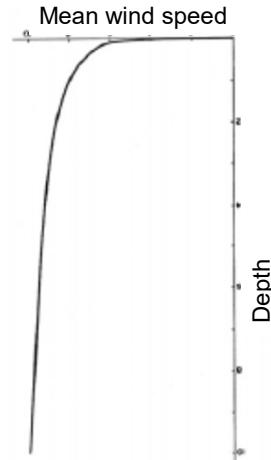
$h_0$  = height where velocity reach 0



18

18

### 3. The Law of the Wall: LOG layer – water side


Similar to air side:  $h \rightarrow z$

Prandtl:  $K_m = k u_* z$

$$(7.2.8) \quad \frac{\partial u}{\partial z} = - \frac{\sqrt{\tau_{SBL} / \rho}}{k z}$$

$$(7.2.9) \quad u(z) = U_0 - \frac{u_*}{k} \ln\left(\frac{z}{z_0}\right)$$

$$(7.2.10) \quad u_* = \sqrt{\tau / \rho}$$



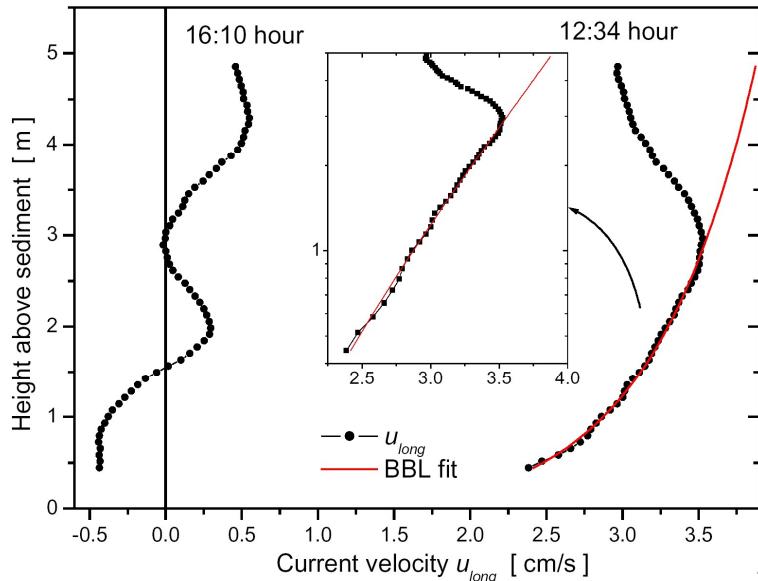
19

19

### 3. The Law of the Wall: LOG layer – water side

#### Turbulence in LOG-layer

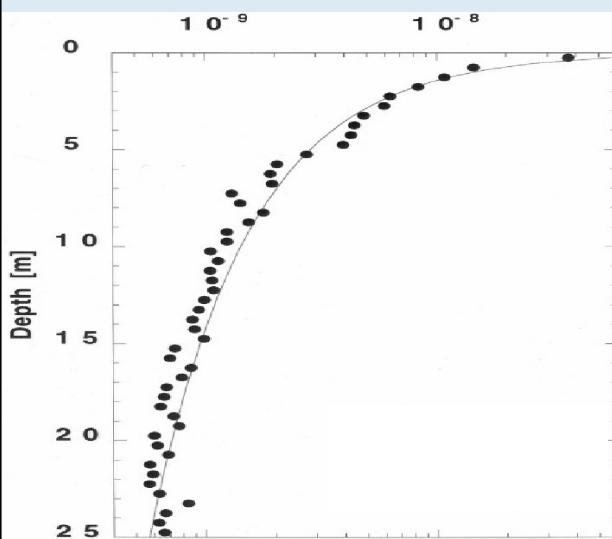
$$(7.2.11) \quad J_R = - \overline{u' w'} \frac{\partial u}{\partial z} = - (\tau_{SBL} / \rho) \frac{\partial u}{\partial z}$$


$$(7.2.12) \quad J_R = u_*^2 \frac{\sqrt{\tau_{SBL} / \rho}}{k z} = u_*^2 \frac{u_*}{k z} = \frac{u_*^3}{k z}$$

→ The rate of production of turbulent kinetic energy  $J_R$  is :

- proportional to the shear velocity  $u_*^3$
- inversely proportional to the distance to the interface  $z$

20


### 3. Near-bottom current profile – Law-of-the-Wall



21

21

### 3. SBL turbulence Energy dissipation $\varepsilon = u_*^3/kz$ [W/kg]



$$J_R = \overline{u' w'} \partial u / \partial z$$

$$\varepsilon = J_R = u_*^3 / kz$$

22

Wüest and Lorke 2003, Stips et al. 2005

22

## 4. Viscous boundary layer

The viscous forces dominate the resistance to momentum transfer

The horizontal flow becomes laminar

$$(7.2.15) \quad \tau_{SBL} = \rho \nu \frac{\partial u}{\partial z}$$

$$\frac{\partial u}{\partial z} = \frac{\tau_{SBL}}{\rho \nu} = \frac{u_*^2}{\nu}$$

$$(7.2.16) \quad \delta v \approx 10 \nu / u^*$$

23

23

## 4. Viscous boundary layer (non-dimensional axis)

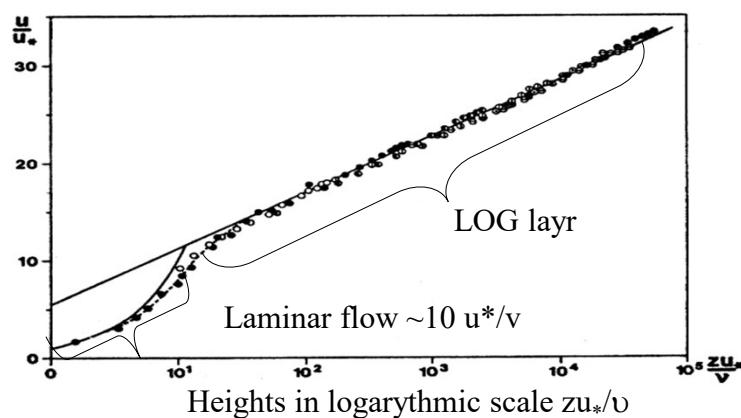



Figure 7.3.1

24

24

## 4. Viscous boundary layer

Turbulent kinetic energy dissipation:

$$(7.3.9) \quad \varepsilon_v = \frac{\tau_{BBL}}{\rho} \frac{\partial u}{\partial z} = \frac{u_*^4}{\nu} \quad [\text{W kg}^{-1}]$$

Total dissipation in the viscous layer:

$$(7.3.10) \quad P_{vdiss} = \rho \varepsilon_v \delta_v \approx 10 \rho u_*^3 \quad [\text{W m}^{-3}]$$

In the BBL:

- 40% of the energy is dissipated in the VBL: laminar (no mixing)
- 60 % of the energy is dissipated in the LOG-layer: turbulent (causing mixing)

25

25

## In class exercice:

### 2) Get used to boundary layer quantities

Wind blows with a velocity of  $U_{10} = 7 \text{ m s}^{-1}$  over a water body and induces a mechanical energy flux ( $P_{10}$ ) from the atmosphere towards the water surface at 10 m height:  $P_{10} = \tau * U_{10} = \rho_{air} * C_{10} * U_{10}^3$

- Calculate the surface stress  $\tau$  [ $\text{N m}^{-2}$ ] that the wind is exercising on the water
- Calculate the mechanical energy flux ( $P_{10}$ , [ $\text{W m}^{-2}$ ]) from the atmosphere towards the water surface at 10 m height.
- Calculate the friction velocity  $w^*$  (in the air BL) and  $u^*$  (in the water BL).
- Calculate the VBL thickness on the airside ( $\delta_{air}$ ) and on the waterside ( $\delta_{water}$ ) of the air-water interface. Which one is broader?

Kinematic viscosity:  $\nu_{water}$  (5 °C) =  $1.52 \cdot 10^{-6} \text{ m}^2 \text{ s}^{-1}$ ;  $\nu_{air}$  (15 °C) =  $14.5 \cdot 10^{-6} \text{ m}^2 \text{ s}^{-1}$

26

26

## In class exercice:

### 2) Get used to boundary layer quantities

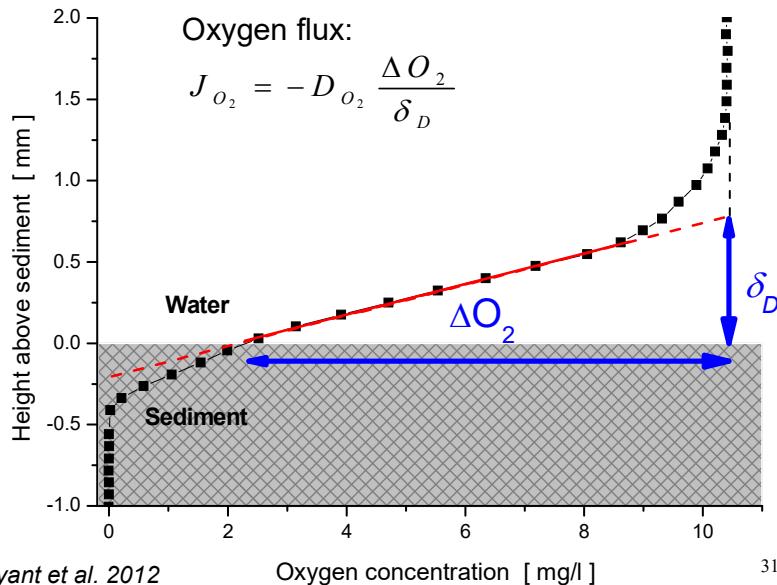
Wind blows with a velocity of  $U_{10} = 7 \text{ m s}^{-1}$  over a water body and induces a mechanical energy flux ( $P_{10}$ ) from the atmosphere towards the water surface at 10 m height:  $P_{10} = \tau * U_{10} = \rho_{air} * C_{10} * U_{10}^3$

- d. Calculate the dissipation in air at 10 m above surface and in water in 1 m depth.
- e. How do you calculate the total dissipation between VBL and 10 m in the atmosphere and between VBL and 1 m in the water?

## 5. The diffusive boundary layer

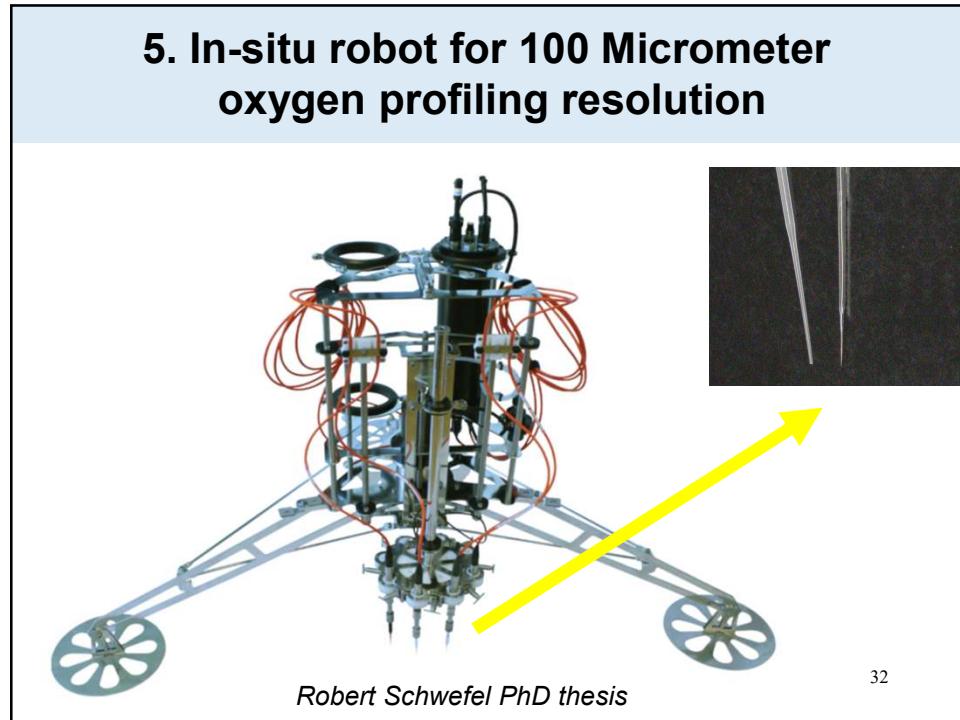
$$(7.2.17) \quad \text{Flux} = -D_C \frac{\partial C}{\partial z} \approx D_C \frac{\Delta C}{\delta_{DBL}} = \frac{D_C}{\delta_{DBL}} \Delta C = V_{tot} \Delta C$$

Two interpretations:


- (i) Molecular diffusion along **gradient  $D_C/\delta_{DBL}$**
- (ii) **Driving force  $D_C$**  and exchange velocity  $V_{tot}$

**Case air-water:**  $V_{tot}$  = gas exchange velocity or piston velocity  
(see chapter 6)

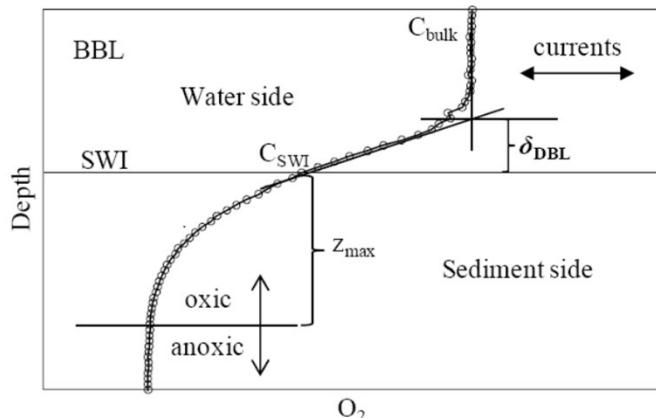
**Case sediment-water:**  $V_{tot}$  = mass exchange velocity  
(any dissolved substance: gas, ions, DIC, organics, etc)


30

## 5. The diffusive boundary layer



31


## 5. In-situ robot for 100 Micrometer oxygen profiling resolution



32

32

## 5. Short-term → fast reaction



Content of  $O_2$  in Sediment =  $0.032 \text{ mmol m}^{-2}$

Flux into sediment  $5 \text{ mmol m}^{-2} \text{ d}^{-1}$

→ Residence time = 9 minutes

33

33

## Three boundary layers – review relative to level of diffusivity K

$K \gg \nu$  → LOG layer

$K = \nu$  → distance  $\delta_\nu$  Limit viscous BL

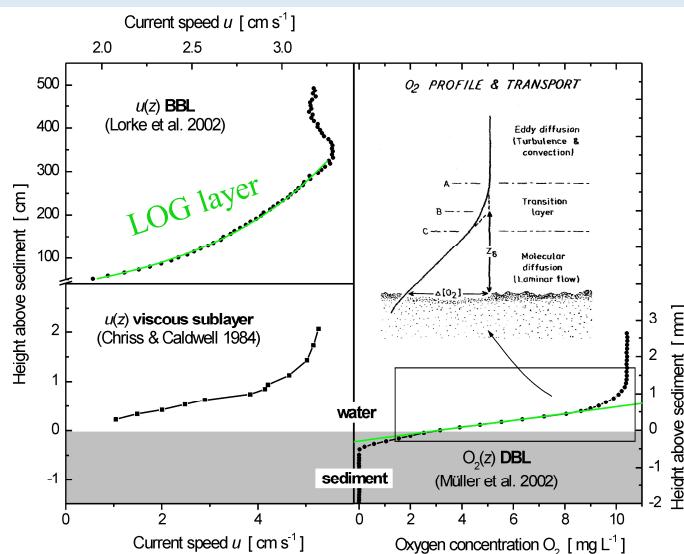
$K < \nu$  → viscous BL

$K = D_C$  → distance  $\delta_{DBL}$  Limit diffusive BL

$K < D_C$  → diffusive BL

34

34


## Three boundary layers

|          |                  |
|----------|------------------|
| Air      |                  |
| DBL      | 1mm              |
| VBL      | 1 cm             |
| LOG      | a few m          |
| Interior | 10s to 100s of m |
| LOG      | a few m          |
| VBL      | 1cm              |
| DBL      | 1mm              |
| Sediment |                  |

35

35

## Summary: Three levels (sizes) of BBL

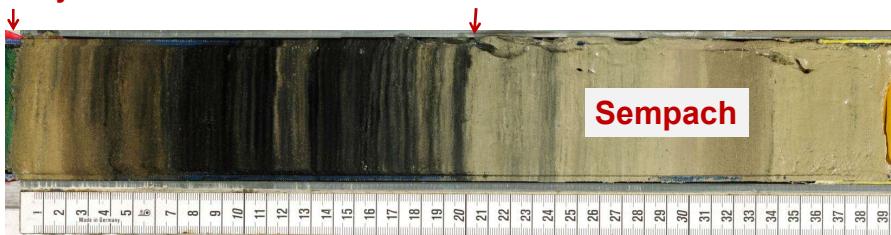


36

36

## Ecological relevance of the diffusive boundary layer




37

37

## Effect of aeration on sediment?

Higher O<sub>2</sub> level → more flux of O<sub>2</sub> into the sediment → more depletion → less C in sediment (see color)

Today



1936

Sempach

Baldegg



1889

38

## Take home message

1. Wind forcing: surface shear stress  $\tau = \rho_{air} \overline{U'W'} = \rho_w \overline{u'w'}$   
 $\tau = \rho_{air} C_{10} U_{10}^2$
2. Friction/shear velocity:  $w_*^2 = \langle U'W' \rangle = \tau / \rho_A \quad u_*^2 = \langle u'w' \rangle = \tau / \rho_w$
3. Three main layers: LOG ( $\sim m$ )  $\gg$  VBL ( $\sim cm$ )  $>$  DBL ( $\sim mm$ )  $>$  interface
  - Logarithmic BL: turbulent,  $K \gg v$ , dissipation  $\varepsilon_v = u_*^3/kz$   

$$u(z) = U_0 - \frac{u_*}{k} \ln\left(\frac{z}{z_0}\right)$$
  - Viscous BL: laminar,  $K \leq v$ ,  $\delta_v \approx 10 v/u_*$ , dissipation  $\varepsilon_v = u_*^4/v$
  - Diffusive BL: laminar,  $K \leq D_C$ , Flux =  $-D_C/\delta_{DBL} \Delta C$
4. Ecological relevance: many key processes across boundary layers:
  - Primary production, light, heat and gas transfers, mass and solutes transfers

39

39

## In class exercice:

### 3) Ecological relevance of boundary layers

- Since the 1980s, the three deep-waters of three lakes on the Swiss Plateau (Lakes Sempach, Baldegg and Hallwil) are artificially oxygenated and artificially mixed during wintertime. Therefore, the deep-water oxygen concentrations are now higher than before the 1980s. Today the oxygen consumption in the deep-water is higher than before the 1980s, despite that water quality has improved? Why?
- Consider a shallow lake and a deep ocean basin with both the same annual primary production. In which of the two sediments do you expect higher / lower organic carbon content?

40

40